[image:]

Data Engineering Guide

Unity Catalog Administration Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Unity Catalog is Databricks' unified governance solution for data and AI assets across the Lakehouse. It provides centralized access control, auditing, lineage tracking, and data discovery—capabilities essential for enterprise data management at scale.
Why Unity Catalog?
Traditional data lakes suffer from fragmented governance: each workspace maintains its own metastore, permissions are workspace-specific, and there's no unified view of data assets. Unity Catalog addresses these challenges by providing:
Unified Governance: Single pane of glass for managing access to all data assets across multiple workspaces, clouds, and regions. This eliminates the complexity of maintaining separate permission systems.
Three-Level Namespace: The catalog.schema.table hierarchy provides logical organization that mirrors how businesses think about their data, enabling intuitive access patterns and delegation of administrative responsibilities.
Fine-Grained Access Control: Grant permissions at any level—from entire catalogs down to individual columns. Row-level security and column masking protect sensitive data while enabling self-service analytics.
Complete Audit Trail: Every access attempt is logged, providing the evidence required for compliance audits and security investigations.
Automated Lineage: Track how data flows from sources through transformations to consumption, enabling impact analysis and regulatory compliance.
Target Audience
This guide serves data platform administrators, security teams, and architects responsible for:
Initial Unity Catalog deployment and configuration
Ongoing administration and user management
Security and compliance implementation
Integration with external identity providers
2. Architecture Overview
Understanding Unity Catalog's architecture is fundamental to effective administration.
2.1 Hierarchical Structure
Unity Catalog organizes assets in a three-level namespace that provides both logical organization and permission boundaries.
┌───┐
│ UNITY CATALOG HIERARCHY │
├───┤
│ │
│ ┌───┐ │
│ │ METASTORE │ │
│ │ (Top-level container, one per region, multiple workspaces) │ │
│ └───┘ │
│ │ │
│ ┌─────────────────────────┼─────────────────────────┐ │
│ ▼ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ CATALOG │ │ CATALOG │ │ CATALOG │ │
│ │ (production) │ │ (development) │ │ (sandbox) │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
│ │ │ │
│ ┌──────┴──────┐ ┌──────┴──────┐ │
│ ▼ ▼ ▼ ▼ │
│ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐ │
│ │ SCHEMA │ │ SCHEMA │ │ SCHEMA │ │ SCHEMA │ │
│ │(sales) │ │(finance│ │(sales) │ │(staging│ │
│ └────────┘ └────────┘ └────────┘ └────────┘ │
│ │ │ │
│ ┌───┴───┐ ┌───┴───┐ │
│ ▼ ▼ ▼ ▼ │
│┌─────┐┌─────┐┌─────┐┌─────┐ │
││TABLE││TABLE││VIEW ││FUNC │ Also: Volumes, Models, Functions │
│└─────┘└─────┘└─────┘└─────┘ │
│ │
└───┘
Metastore: The top-level container that holds all Unity Catalog objects. A metastore is associated with a cloud region and can be attached to multiple workspaces in that region.
Catalog: A logical grouping of schemas, typically representing an environment (production, development) or business domain. Catalogs are the primary permission boundary.
Schema (Database): A grouping of tables, views, functions, and volumes. Schemas typically represent a subject area or team boundary.
Securable Objects: Tables, views, volumes, functions, and ML models that contain or process data.
2.2 Identity Integration
Unity Catalog integrates with identity providers for user and group management.
┌───┐
│ IDENTITY ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ IDENTITY PROVIDERS │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Azure AD │ │ Okta │ │ AWS IAM │ │ │
│ │ │ (Entra ID) │ │ │ │ Identity │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └───┘ │
│ │ │
│ SCIM Provisioning │
│ ▼ │
│ ┌───┐ │
│ │ DATABRICKS ACCOUNT (Identity Store) │ │
│ │ ┌───────────────────┐ ┌───────────────────┐ │ │
│ │ │ USERS │ │ GROUPS │ │ │
│ │ │ user@company.com │ │ data-engineers │ │ │
│ │ │ analyst@co.com │ │ data-scientists │ │ │
│ │ └───────────────────┘ └───────────────────┘ │ │
│ │ │ │
│ │ ┌───────────────────┐ │ │
│ │ │ SERVICE PRINCIPALS│ For automation and service accounts │ │
│ │ │ etl-service-sp │ │ │
│ │ │ bi-service-sp │ │ │
│ │ └───────────────────┘ │ │
│ └───┘ │
│ │ │
│ Assigned to │
│ ▼ │
│ ┌───┐ │
│ │ WORKSPACES & UNITY CATALOG │ │
│ └───┘ │
│ │
└───┘
3. Initial Setup and Configuration
This section covers the steps for deploying Unity Catalog in a new environment.
3.1 Prerequisites
Before configuring Unity Catalog, ensure:
	Requirement
	Description

	Account Admin access
	Required for metastore creation

	Cloud storage
	S3 bucket (AWS), ADLS container (Azure), or GCS bucket

	IAM configuration
	Cross-account role (AWS) or managed identity (Azure)

	Network connectivity
	Workspace can reach storage endpoint

3.2 Create Metastore
A metastore is created once per region and shared across workspaces.
Using Databricks Account Console:
Navigate to Account Console → Data
Click "Create Metastore"
Configure:
Name: production-metastore
Region: Match your primary workspace region
Storage root: Cloud storage path for managed tables
Using Terraform:
resource "databricks_metastore" "production" {
 name = "production-metastore"
 region = "us-east-1"
 storage_root = "s3://your-bucket/unity-catalog"
 owner = "platform-admins"

 force_destroy = false # Prevent accidental deletion
}

Assign metastore to workspace
resource "databricks_metastore_assignment" "production" {
 metastore_id = databricks_metastore.production.id
 workspace_id = var.workspace_id
}
3.3 Configure Storage Credentials
Storage credentials authenticate Unity Catalog to cloud storage for managed tables.
AWS (IAM Role):
resource "databricks_storage_credential" "aws_credential" {
 name = "aws-production-credential"
 aws_iam_role {
 role_arn = "arn:aws:iam::123456789:role/unity-catalog-role"
 }
 comment = "Credential for production data lake"
}
Azure (Managed Identity):
resource "databricks_storage_credential" "azure_credential" {
 name = "azure-production-credential"
 azure_managed_identity {
 access_connector_id = "/subscriptions/.../accessConnectors/unity-catalog"
 }
 comment = "Credential for production ADLS"
}
3.4 Create External Locations
External locations map cloud storage paths to Unity Catalog for external tables.
resource "databricks_external_location" "raw_data" {
 name = "raw-data-location"
 url = "s3://data-lake-bucket/raw/"
 credential_name = databricks_storage_credential.aws_credential.name
 comment = "External location for raw data landing zone"
}

resource "databricks_external_location" "processed_data" {
 name = "processed-data-location"
 url = "s3://data-lake-bucket/processed/"
 credential_name = databricks_storage_credential.aws_credential.name
 comment = "External location for processed data"
}
3.5 Create Initial Catalogs
Create catalogs for different environments or domains.
-- Production catalog for governed data assets
CREATE CATALOG IF NOT EXISTS production
COMMENT 'Production data assets - governed and validated';

-- Development catalog for engineering work
CREATE CATALOG IF NOT EXISTS development
COMMENT 'Development environment for building and testing';

-- Sandbox catalog for exploration
CREATE CATALOG IF NOT EXISTS sandbox
COMMENT 'Sandbox for ad-hoc exploration - no SLAs';
4. User and Group Management
Effective identity management is the foundation of data governance.
4.1 SCIM Provisioning
SCIM (System for Cross-domain Identity Management) automatically syncs users and groups from your identity provider.
Configure SCIM for Azure AD:
In Azure AD, add Databricks from the Enterprise Applications gallery
Configure provisioning with:
Tenant URL: https://accounts.cloud.databricks.com/api/2.0/accounts/{account-id}/scim/v2
Secret Token: Account-level SCIM token
Map attributes (user principal name, display name, groups)
Enable provisioning
Configure SCIM for Okta:
In Okta, add Databricks application
Configure provisioning settings
Map groups to sync
Enable automatic provisioning
4.2 Group Management Best Practices
Organize groups to match your access patterns:
┌───┐
│ RECOMMENDED GROUP STRUCTURE │
├───┤
│ │
│ ADMINISTRATIVE GROUPS │
│ ├── platform-admins (Full Unity Catalog administration) │
│ ├── workspace-admins (Workspace-level administration) │
│ └── security-admins (Audit and compliance access) │
│ │
│ ROLE-BASED GROUPS │
│ ├── data-engineers (Full access to development) │
│ ├── data-scientists (Read production, write sandbox) │
│ ├── data-analysts (Read-only production access) │
│ └── bi-developers (Dashboard and report creation) │
│ │
│ DOMAIN-BASED GROUPS │
│ ├── sales-team (Sales domain data access) │
│ ├── finance-team (Finance domain data access) │
│ ├── hr-team (HR domain - restricted PII) │
│ └── marketing-team (Marketing domain access) │
│ │
│ NESTED GROUP EXAMPLE: │
│ data-analysts │
│ ├── sales-analysts (data-analysts + sales-team) │
│ ├── finance-analysts (data-analysts + finance-team) │
│ └── marketing-analysts (data-analysts + marketing-team) │
│ │
└───┘
Create Groups via SQL:
-- Administrative groups
CREATE GROUP IF NOT EXISTS platform_admins;
CREATE GROUP IF NOT EXISTS security_admins;

-- Role-based groups
CREATE GROUP IF NOT EXISTS data_engineers;
CREATE GROUP IF NOT EXISTS data_scientists;
CREATE GROUP IF NOT EXISTS data_analysts;

-- Add users to groups
ALTER GROUP data_engineers ADD USER `engineer@company.com`;
ALTER GROUP data_analysts ADD USER `analyst@company.com`;

-- Nested groups (add group to group)
ALTER GROUP data_analysts ADD GROUP sales_analysts;
4.3 Service Principal Management
Service principals enable automated processes to access Unity Catalog.
-- Create service principal
CREATE SERVICE PRINCIPAL `etl-pipeline-sp`;

-- Grant permissions to service principal
GRANT USE CATALOG ON CATALOG production TO `etl-pipeline-sp`;
GRANT USE SCHEMA ON SCHEMA production.staging TO `etl-pipeline-sp`;
GRANT SELECT, MODIFY ON SCHEMA production.staging TO `etl-pipeline-sp`;

-- For BI tools (read-only)
CREATE SERVICE PRINCIPAL `tableau-bi-sp`;
GRANT USE CATALOG ON CATALOG production TO `tableau-bi-sp`;
GRANT USE SCHEMA ON SCHEMA production.analytics TO `tableau-bi-sp`;
GRANT SELECT ON SCHEMA production.analytics TO `tableau-bi-sp`;
5. Catalog and Schema Administration
Catalogs and schemas require ongoing administration for organization and access control.
5.1 Catalog Management
Create Production Catalog with Governance:
-- Create catalog with clear ownership
CREATE CATALOG production
MANAGED LOCATION 's3://data-lake/production/'
COMMENT 'Production data assets - all data is governed';

-- Set owner for delegation
ALTER CATALOG production OWNER TO platform_admins;

-- Enable predictive optimization (if available)
ALTER CATALOG production ENABLE PREDICTIVE OPTIMIZATION;
Catalog Isolation Patterns:
-- Environment-based isolation
CREATE CATALOG production; -- Governed production data
CREATE CATALOG development; -- Development and testing
CREATE CATALOG sandbox; -- Exploration and experimentation

-- Domain-based isolation (for large organizations)
CREATE CATALOG sales;
CREATE CATALOG finance;
CREATE CATALOG marketing;

-- Hybrid approach
CREATE CATALOG production_sales;
CREATE CATALOG production_finance;
CREATE CATALOG development;
5.2 Schema Management
Create Schema with Standards:
-- Bronze layer (raw data)
CREATE SCHEMA IF NOT EXISTS production.bronze
MANAGED LOCATION 's3://data-lake/production/bronze/'
COMMENT 'Raw data - as-is from sources';

-- Silver layer (cleansed)
CREATE SCHEMA IF NOT EXISTS production.silver
MANAGED LOCATION 's3://data-lake/production/silver/'
COMMENT 'Cleansed and validated data';

-- Gold layer (business-ready)
CREATE SCHEMA IF NOT EXISTS production.gold
MANAGED LOCATION 's3://data-lake/production/gold/'
COMMENT 'Business-ready aggregations and models';

-- Set schema owners
ALTER SCHEMA production.bronze OWNER TO data_engineers;
ALTER SCHEMA production.silver OWNER TO data_engineers;
ALTER SCHEMA production.gold OWNER TO data_engineers;
5.3 Naming Conventions
Establish and enforce naming conventions for discoverability:
	Object Type
	Convention
	Example

	Catalog
	environment or domain
	`production`, `sales`

	Schema
	layer or subject area
	`bronze`, `silver`, `orders`

	Table
	noun, singular
	`customer`, `order_line`

	View
	`v_` prefix for views
	`v_active_customers`

	Function
	`fn_` prefix
	`fn_calculate_tax`

6. Maintenance Operations
Regular maintenance ensures optimal performance and compliance.
6.1 Metastore Health Monitoring
-- Check metastore status
SELECT
 metastore_id,
 name,
 region,
 storage_root,
 created_at,
 updated_at
FROM system.information_schema.metastores;

-- List all catalogs
SELECT
 catalog_name,
 catalog_owner,
 comment,
 created_at
FROM system.information_schema.catalogs
ORDER BY catalog_name;

-- List schemas with statistics
SELECT
 catalog_name,
 schema_name,
 schema_owner,
 comment,
 created_at
FROM system.information_schema.schemata
ORDER BY catalog_name, schema_name;
6.2 Table Maintenance
-- Identify tables needing optimization
SELECT
 table_catalog,
 table_schema,
 table_name,
 last_altered,
 DATEDIFF(day, last_altered, CURRENT_DATE) as days_since_altered
FROM system.information_schema.tables
WHERE table_type = 'MANAGED'
ORDER BY last_altered ASC;

-- Run OPTIMIZE on large tables
OPTIMIZE production.gold.fact_sales;

-- Run VACUUM to clean up old files
VACUUM production.gold.fact_sales RETAIN 168 HOURS;

-- Analyze tables for statistics
ANALYZE TABLE production.gold.fact_sales COMPUTE STATISTICS FOR ALL COLUMNS;
6.3 Storage Management
-- Check storage usage by schema
SELECT
 table_catalog,
 table_schema,
 COUNT(*) as table_count,
 SUM(data_size_bytes) / (1024*1024*1024) as data_size_gb
FROM system.information_schema.tables
WHERE table_type = 'MANAGED'
GROUP BY table_catalog, table_schema
ORDER BY data_size_gb DESC;

-- Identify large tables
SELECT
 table_catalog,
 table_schema,
 table_name,
 data_size_bytes / (1024*1024*1024) as size_gb
FROM system.information_schema.tables
WHERE data_size_bytes > 10737418240 -- > 10 GB
ORDER BY data_size_bytes DESC;
7. Delegation and Ownership
Proper delegation enables self-service while maintaining governance.
7.1 Ownership Model
┌───┐
│ OWNERSHIP DELEGATION MODEL │
├───┤
│ │
│ METASTORE ADMIN (Platform Team) │
│ └── Creates catalogs, storage credentials, external locations │
│ │ │
│ ├── CATALOG OWNER (Domain Team Lead) │
│ │ └── Creates schemas, manages catalog-level permissions │
│ │ │ │
│ │ ├── SCHEMA OWNER (Data Engineer Lead) │
│ │ │ └── Creates tables/views, manages schema permissions │
│ │ │ │ │
│ │ │ └── TABLE OWNER (Data Engineer) │
│ │ │ └── Manages individual table access │
│ │ │ │
│ │ └── SCHEMA OWNER (Analytics Lead) │
│ │ └── Manages analytics layer │
│ │ │
│ └── CATALOG OWNER (Another Domain) │
│ └── ... │
│ │
└───┘
7.2 Granting Ownership
-- Delegate catalog ownership
ALTER CATALOG sales OWNER TO sales_platform_team;

-- Delegate schema ownership
ALTER SCHEMA sales.analytics OWNER TO sales_analytics_team;

-- Delegate table ownership
ALTER TABLE sales.analytics.customer_360 OWNER TO `lead-analyst@company.com`;

-- Grant ability to manage permissions (without ownership)
GRANT MANAGE ON SCHEMA sales.analytics TO sales_data_stewards;
7.3 Permission Inheritance
Permissions flow down the hierarchy unless explicitly restricted:
-- Grant at catalog level (inherits to all schemas and tables)
GRANT USE CATALOG ON CATALOG production TO data_analysts;

-- Grant at schema level (inherits to all tables in schema)
GRANT USE SCHEMA ON SCHEMA production.gold TO data_analysts;
GRANT SELECT ON SCHEMA production.gold TO data_analysts;

-- Restrict specific table (override inheritance)
REVOKE SELECT ON TABLE production.gold.sensitive_data FROM data_analysts;
GRANT SELECT ON TABLE production.gold.sensitive_data TO pii_viewers;
8. Backup and Recovery
Data protection requires planning for various failure scenarios.
8.1 Catalog Backup Strategies
Export Catalog Metadata:
Export catalog structure for disaster recovery
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

def export_catalog_structure(catalog_name):
 """Export catalog, schema, and table definitions"""
 export = {"catalog": catalog_name, "schemas": []}

 schemas = w.schemas.list(catalog_name=catalog_name)
 for schema in schemas:
 schema_export = {
 "name": schema.name,
 "tables": []
 }

 tables = w.tables.list(catalog_name=catalog_name, schema_name=schema.name)
 for table in tables:
 table_info = w.tables.get(f"{catalog_name}.{schema.name}.{table.name}")
 schema_export["tables"].append({
 "name": table.name,
 "columns": [{"name": c.name, "type": c.type_name} for c in table_info.columns],
 "comment": table_info.comment
 })

 export["schemas"].append(schema_export)

 return export

Export and save
import json
backup = export_catalog_structure("production")
with open("catalog_backup.json", "w") as f:
 json.dump(backup, f, indent=2)
8.2 Permission Backup
-- Export all grants for audit/backup
SELECT
 grantee,
 table_catalog,
 table_schema,
 table_name,
 privilege_type,
 is_grantable
FROM system.information_schema.table_privileges
WHERE table_catalog = 'production'
ORDER BY grantee, table_schema, table_name;

-- Export schema-level grants
SELECT
 grantee,
 catalog_name,
 schema_name,
 privilege_type
FROM system.information_schema.schema_privileges
WHERE catalog_name = 'production';
8.3 Recovery Procedures
Restore from Time Travel (for data):
-- View table history
DESCRIBE HISTORY production.gold.fact_sales;

-- Restore to specific version
RESTORE TABLE production.gold.fact_sales TO VERSION AS OF 42;

-- Restore to specific timestamp
RESTORE TABLE production.gold.fact_sales
TO TIMESTAMP AS OF '2025-01-28T00:00:00Z';
9. Troubleshooting
9.1 Common Issues
	Issue
	Cause
	Resolution

	"Catalog not found"
	Not assigned to workspace
	Assign metastore to workspace

	"Permission denied"
	Missing USE CATALOG/SCHEMA
	Grant required permissions

	"Storage credential invalid"
	IAM role misconfigured
	Verify trust policy

	"External location overlap"
	Overlapping paths
	Use non-overlapping paths

9.2 Diagnostic Queries
-- Check user's effective permissions
SHOW GRANTS TO `user@company.com`;

-- Check permissions on specific object
SHOW GRANTS ON TABLE production.gold.customers;

-- Check who can access a table
SELECT
 grantee,
 privilege_type,
 is_grantable
FROM system.information_schema.table_privileges
WHERE table_catalog = 'production'
 AND table_schema = 'gold'
 AND table_name = 'customers';

-- Verify metastore assignment
SELECT * FROM system.information_schema.metastores;
10. Best Practices Summary
	Area
	Recommendation

	Identity
	Use SCIM for automatic provisioning

	Groups
	Use groups for permissions, not individual users

	Catalogs
	Separate by environment (prod/dev)

	Schemas
	Use medallion architecture (bronze/silver/gold)

	Ownership
	Delegate ownership to domain teams

	Permissions
	Grant at highest appropriate level

	Monitoring
	Regular audits of permissions and usage

	Backup
	Document and version control configurations

Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

